ES-2 Biofidelity and Injury Assessment Capability

May 2001

Matthew R. Maltese

Randa Radwan Samaha

US Department of Transportation
National Highway Traffic Safety Administration

John Bolte

Transportation Research Center

People Saving People Http://www.nhtsa.dot.gov

Presentation Overview

- **ES-2** Research Program Time Line
- Flat top and the ES-2
- Biofidelity of the ES-2 and SID
- Injury Assessment Capability of the ES-2 and SID
- Back Plate Loads in the ES-2
- Conclusions
- Future Work

Presentation Overview

- **ES-2** Research Program Time Line
- Flat top and the ES-2
- Biofidelity of the ES-2 and SID
- Injury Assessment Capability of the ES-2 and SID
- Back Plate Loads in the ES-2
- Conclusions
- Future Work

Why ES-2?

- NHTSA is evaluating the ES-2...
 - . . . to Improve safety for the US Driving Population, and
 - . . . for interim regulatory harmonization of a side impact dummy

ES-2 Research Testing

Planned

3-5/00 7/00 8/00-4/01 5-7/01 8/01 High mass impactor tests to evaluate ES-2 proposed rib designs: coated piston, ball bearing, & needle bearing Second ES-2 Available • Six full scale tests with front and rear ES-2: two EU, two 214, & two side NCAP tests Thirteen torso & pelvis biofidelity sled tests & limited repeatability Three 214 tests/IIHS barrier • Eight 201P pole comparison tests: ES-2 versus SIDH3 Component tests: back plate interaction, flat top • Sled tests: head/neck/shoulder biofidelity & kinematics • TBD- Eight 214/NCAP tests with current vehicles for fleet performance

Presentation Overview

- ES-2 Research Program Time Line
- Flat top and the ES-2
- Biofidelity of the ES-2 and SID
- Injury Assessment Capability of the ES-2 and SID
- Back Plate Loads in the ES-2
- Conclusions
- Future Work

ES-2 and Flat-Top

- Flat-top is a period of constant rib deflection over time.
- Flat-top is merely evidence that the ribs and the spine are moving at the same velocity relative to ground.
 - Flat-top is not necessarily evidence of rib binding.

"High Mass" Impactor Tests

- Impactor: 907 kg at 5 m/s contacting the thorax and abdomen
- Test conditions: Impactor contacted the ES-2 at angles of 0, +10, +20, and -10 in the horizontal plane
- ES-2 rib modules designs: coated piston, ball and needle bearings

"High Mass" Impactor Tests - Results

- No evidence of flat-top in ES-2 needle bearing rib modules
- Higher deflections in ES-2 compared to Eurosid-1

ES-2 Phase I Full Scale Tests

NHTSA Side Impact Research

VEHICLE	DUMMY	TEST	SPEED
		CONFIGURATION	(km/h)
96 Taurus- 4dr*	Eurosid-1	EU Side	48.3
96 Taurus- 4dr	ES-2	EU Side	49.2
95 Metro- 3 dr*	Eurosid-1	EU Side	50.3
96 Metro- 3 dr	ES-2	EU Side	50.5
96 Taurus- 4dr	ES-2	FMVSS 214	53.3
96 Taurus- 4dr	ES-2	FMVSS 214	52.3
98 Chevy Cavalier-	ES-2	US Side NCAP	61.6
4dr			
2000 Grand Am- 2dr	ES-2	US Side NCAP	62.1

* Baseline Tests in 1997

ES-2 Phase I Full Scale Tests

NHTSA Side Impact Research

VEHICLE	DUMMY	TEST	SPEED
		CONFIGURATION	(km/h)
	ES-2	EU Side	
	ES-2		
	ES-2	FMVSS 214	
96 Taurus- 4dr	ES-2	FMVSS 214	52.3
98 Chevy Cavalier-	ES-2	US Side NCAP	61.6
4dr			
2000 Grand Am- 2dr	ES-2	US Side NCAP	62.1

* Baseline Tests in 1997

Full Scale Test Rib Responses EU Tests: ES-2 Versus Eurosid-1

- Deflection flat tops reduced but still present for ES-2
- Higher deflection for ES-2

Full Scale Test Rib Responses EU Tests: ES-2 Versus Eurosid-1

NHTSA Side Impact Research

Post-event oscillations in most rib deflections and minor oscillations near main event in a few deflections

Full Scale Test Rib Responses 214/Side NCAP Tests: ES-2

NHTSA Side Impact Research

■ With one "exception" deflection flat tops not present

Full Scale Test Rib Responses 214/Side NCAP Tests: ES-2

NHTSA Side Impact Research

One rib deflection (of 24) exhibited flat top behavior ... close to full dynamic range of rib module.

Presentation Overview

- ES-2 Research Program Time Line
- Flat top and the ES-2
- Biofidelity of the ES-2 and SID
- Injury Assessment Capability of the ES-2 and SID
- Back Plate Loads in the ES-2
- Conclusions
- Future Work

Biofidelity - What is Important?

- First and foremost, a dummy should interact with the vehicle environment in a human-like manner.
 - Human-like force-area-time histories between occupant and vehicle.
- Secondly, those measures necessary to calculate injury criteria should be similar to the same measures on the human.

IHRA Side Impact Torso and Pelvis Sled Test Requirements

- Shoulder to Pelvis evaluation
- Based upon 45 NHTSA sponsored cadaver tests
- Two door speeds 6.7 and 8.9 m/s (15 and 20 mph)
- Two door stiffnesses -Padded and rigid
- Four door surface geometries

IHRA Side Impact Sled Test Load Wall Geometry

IHRA Side Impact Sled Requirements

- Door Forces at the thorax, abdomen, pelvis and legs
- Deflection of the upper and lower thorax, and mid abdomen.
- Acceleration spine, pelvis and ribs

Rating Dummy Biofidelity - DCV/CCV Ratio

0 <= DCV/CCV <1	Excellent - Dummy is less variant than the cadaver sample.
DCV/CCV = 1	Excellent - Dummy is as variant as the cadaver sample.
1 < DCV/CCV <=2	Good - Dummy is between one and two times as variant as the cadaver sample.
2 < DCV/CCV <=3	Moderate - Dummy is between two and three times as variant as the cadaver sample.
N < DCV/CCV <= N+1	Poor - Dummy is between n and n+1 times as variant as the cadaver sample.

DCV/CCV Ratio – Acceleration

DCV/CCV Ratio - Deflection

DCV/CCV Ratio vs. Test Condition

Previous work - ISO Biofidelity Ratings

Note: Larger numbers indicate better biofidelity.

	Eurosid-1	SID
Head	3.33	0.0
Neck	3.70	2.55
Shoulder	3.90	0.0
Thorax	4.78	5.02
Abdomen	3.23	4.38
Pelvis	1.76	2.76
Overall	3.22	2.78

Presentation Overview

- ES-2 Research Program Time Line
- Flat top and the ES-2
- Biofidelity of the ES-2 and SID
- Injury Assessment Capability of the ES-2 and SID
- Back Plate Loads in the ES-2
- Conclusions
- Future Work

Comparison of ES-2 and SID/H3 Instrumentation

	Measurement	ES-2	SID/HIII
Head	9 accel Array	U	U
Neck	Upper Loads	U	U
	Lower Loads	U	U
Shoulder	Load/Rotation	U	

Comparison of ES-2 and SID/H3 Instrumentation

	Measurement	ES-2	SID/HIII
Thorax	Deflection	U	U
	Acceleration	U	U
Abdomen	Force	U	
Pelvis	Acceleration	U	U
	Force	U	

ES-2 Torso Injury Assessment Capability Compared to SID

 Compare SID and ES-2 instrumentation output in flat wall and abdominal offset conditions

 Correlate instrumentation output with injuries in similar cadaver tests

ES-2 Torso Injury Assessment Capability Compared to SID

- Cadaver Test B4218
 - AIS 4 Kidney Laceration
 - 5 fractured Ribs

ES-2 Torso Injury Assessment Capability Compared to SID

- Cadaver Test B4268
 - AIS 3 Kidney Laceration
 - 7 fractured Ribs

ES-2 Torso Injury Assessment Capability Compared to SID

		Flat Wall	Abdominal Offset
SID	TTI (85 g)	71 g	52 g
	Pelvis Acceleration (120 g)	67 g	53 g
ES-2	Chest Deflection (42 mm)	52 mm	31 mm
	Abdominal Force (2500 N)	1402 N	8585 N
Cadaver Autopsy Results			
Fractured Ribs		7	6
Soft Tissue		None	Kidney Laceration

ES-2 Torso Injury Assessment Capability Compared to SID

Conclusion - ES-2 abdominal load measurement capability detects injuries the SID misses.

ES-2 Pelvis

- ES-2 measures Pelvis Acceleration and Pubic Symphysis Load (PSL), while SID only measures acceleration
- PSL may be a better measure of the load which is directed into the hip joint, and thus may be a better predictor of serious pelvic injury.

Presentation Overview

- ES-2 Research Program Time Line
- Flat top and the ES-2
- Biofidelity of the ES-2 and SID
- Injury Assessment Capability of the ES-2 and SID
- Back Plate Loads in the ES-2
- Conclusions
- Future Work

ES-2 Back-plate

ES-2 Back-plate

Force Balance on ES-2 Spine

Full-Scale Vehicle Test - Driver Impulse Analysis

Full-Scale Vehicle Test -Passenger Impulse Analysis

Presentation Overview

- ES-2 Research Program Time Line
- Flat top and the ES-2
- Biofidelity of the ES-2 and SID
- Injury Assessment Capability of the ES-2 and SID
- Back Plate Loads in the ES-2
- Conclusions
- Future Work

Conclusions

- The ES-2 thorax is less biofidelic than the SID while the ES-2 abdomen and pelvis biofidelity are roughly equivalent.
- ES-2 detects abdominal injuries that the SID misses.
- ES-2 has the potential to better detect serious pelvic injuries.
- More research is necessary to understand the biofidelity of the head/neck complex.
- ES-2 modifications appear to have addressed rib binding which is one mechanism of rib deflection flat top.
- Loads from the seat back through the ES-2 back plate transfer little momentum to the spine of the dummy.

Additional ES-2 Research

- Additional component/sled tests to provide a assessment of head/neck/shoulder biofidelity and kinematics (summer 01)
- Additional component test to ensure that the ES-2 ribs are not binding and that the dummy is repeatable (summer 01)
- Component tests to assess back plate interaction with the seat back (summer 01)
- Application of injury criteria for the ES-2 dummy (summer 01)

NHTSA Side Impact Research

Thank you!